

96V OBC + DC-DC Technical Manual

Model: TCCDU44662152

Name: 6.6KW 96V OBC + 1.5KW DC/DC Integrated

Version: V1.0

Issue Date: 2019-2-27

Table of Contents

1 Overview	3
1.1Subject	3
1.2Main features	3
2 Size and Appearance	3
2.1 Size and Weight	3
2.2 Appearance	4
2.3 Label	4
3 Environmental specification	4
4 Charger technical specification	5
4.1 Charger regulatory requirements and reference standards	5
4.2 Charger safety regulations	8
4.3 Charger electrical performance	8
4.3.1 Input	8
4.3.2 Output	8
4.3.3 Low voltage output	9
4.3.4 Low voltage interface	9
4.3.5 Environment Test	9
4.3.6 Protection functions	10
5 DC-DC Converter technical specification	10
5.1 DC/DC Converter regulatory requirements and reference standards	11
5.2 DC/DC Converter safety regulations	10
5.3 DC/DC electrical performance	10
5.3.1 Input	10
5.3.2 Output	11
5.3.3 Environment Test	11
5.3.4 DC/DC Converter protection functions	12
6 Interface	12
6.1 Low voltage connector and pins definition	
6.1.1 32 pin Signal Interface	12
6.2 High voltage connector and pins definition	13
6.2.1 Input connector	13
6.2.2 Charger output and DC input connector	14
7 Mechanical Requirement	16
7.1 Drawing	15
8 package,transportation and storage	16
8.1 Package	17
8.2 Transportation	17
8.3 Stroage	17
8.4 Safe guide	18

1 Overview

1.1 Subject

CD-L series full-sealed on-board charger and DC/DC integrated is a product specially designed for new energy vehicles according to standard QC/T895-2011 《Conductive On-board Chargers for Electric Vehicles》 and GB/T24347-2009《Electrical Vehicle DC/DC Converters》, which functions as the battery charger plus providing the 12V low voltage DC power supply for low voltage devices in the vehicle. The output can be connected to the 12V back-up battery. The DC-DC converter will manage charging the back-up battery. This product not only has the advantages of high efficiency, small size, high stability and long lifetime but also has high protection level, high reliability and more protection functions. It is an ideal solution for electric vehicles. The thermal sensor is built into the charger. It has the function of over-temperature protection and can auto-recover when the temperature decreases. With full-sealed protection level of IP67, the charger can work under complicated operation conditions.

1.2 Main Features

- 1.2.1 Support UDS diagnosis, with CAN wake-up function
- 1.2.2 Full-sealed process, can reliably work in the temperature of -40 $^{\circ}$ C $^{\sim}$ 60 $^{\circ}$ C
- 1.2.3 Built-in thermal sensor, shut off when temperature up to 90° C
- 1.2.4 Protection Reachs IP67

2 Size and Appearance

2.1 Size and Weight

	Length (mm)	Width (mm)	Height (mm)	GW (KG)
Fan-cooled	373±5	281±3	115±5	<10

2.2 Appearance

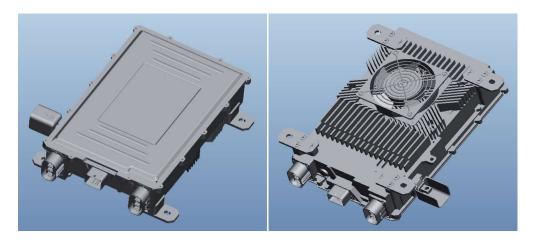
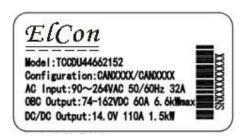



Chart 1 Fan-cooled Appearance

2.3 Label

3 Environmental Specification

▲ Working environmental temperature

Area	Lowest Temperature	Highest Temperature
Global	-40℃	60℃

▲Storage environmental temperature

Area	Lowest Temperature	Highest Temperature
Global	-55℃	100℃

▲ Humidity: relative humidity 5%~95%, no condensation

▲Altitude: ≤3000m

▲Working noisy: max when working ≤65dB, meet China standard QTC 895-2011

4 Charger Technical Specification

4.1 Charger regulatory requirements and reference standards

The design and production of the charger must meet the relevant requirements of China's mandatory laws and environmental regulations on vehicle requirements, reference standards as following::

No.	Standard Code	Standard Name	Remark
1	QC/T 895-2011	Conductive on-board charger of electrical vehicle	/
3	QSQR E1-5-2012	Prohibited substances requirement	/
4	GB/T 18387-2008	Electromagnetic field emission intensity limits and measurement methods for electric vehicles, broadband, 9kHz~30MHz	/
5	GB/T 18384-2015	Safety requirements of electrical vehicle	/
6	GB/T 18487-2015	Electric vehicle conductive charging system	/
7	GB/T 28382-2012	Pure electric passenger vehicle technical conditions	/
8	GB/T 14023-2011	Limits and methods of measurement for radio disturbance characteristics of vehicles, ships and installations driven by internal combustion engines	/
9	EN 55022	Electromagnetic compatibility test Testing Technology Electromagnetic anti-interference test of information technology products	/
10	EN 50178	General electronic appliance safety standards	/
11	EN 61000-3-2	Electromagnetic compatibility test Testing Technology Harmonic current emission test	/
12	EN 61000-3-3	Electromagnetic compatibility test Testing Technology Voltage fluctuation and scintillation test	/
13	EN 61000-4-2	Electromagnetic compatibility test Testing Technology Electrostatic release immunity test	/
14	EN 61000-4-3	Electromagnetic compatibility test Testing Technology Anti-jamming test of radio frequency electromagnetic wave	/
15	EN 61000-4-4	Electromagnetic compatibility test Testing Technology Electrical fast transient/impact immunity test	/
16	EN 61000-4-5	Electromagnetic compatibility test Testing Technology Surge (impact) immunity test	/

		Electromagnetic compatibility test	
47	EN 64000 4 6	Testing Technology	,
17	EN 61000-4-6	Test of immunity to conductive interference induced by	/
		radio frequency magnetic field	
		Electromagnetic compatibility test	
40	EN 04000 4 0	Testing Technology	,
18	EN 61000-4-8	Frequency magnetic field anti-interference test of	/
		power supply	
		Electromagnetic compatibility test	
19	EN61000-4-11	Testing Technology	/
		Voltage transient drop anti-jamming test	
		General standard for electromagnetic compatibility	
20	EN 61000-6-1	testing, Immunity for domestic, commercial and light	/
		industrial environments	
04	EN 04000 C 0	General standard for electromagnetic compatibility	,
21	EN 61000-6-2	testing, Immunity in industrial environments	/
		General standard for electromagnetic compatibility	
22	EN 61000-6-3	testing, Radiation standards for residential, commercial	/
		and light industrial environments	
		General standard for electromagnetic	
23	EN 61000-6-4	compatibility testing, Emission standard for industrial	/
		environments	
24	OCOD E0 4 2045	EMC technical requirements for electronic components	,
24	QSQR E8-4-2015	and subsystems of passenger vehicles	/
		Limits and measurement methods for the radio	
25	GB/T 18655-2010	disturbance characteristics of vehicles, ships and	
25		internal combustion engines used to protect	/
		vehicle-mounted receivers	

4.2 Charger Safety Regulations Specification

	Condition	Requirement
Grounding resistance test	@25A/AC	≤100mΩ
Input insulation test	@1000V/DC	≥20MΩ
Output insulation test	@1000V/DC	≥20MΩ
Input withstand test	@2000V/AC 1min	Leak current≤15ma
Output withstand test	@2000V/AC 1min	Leak current≤10ma
Input to Output withstand	@2000V/AC 1min	Leak current≤10ma
test		

4.3 Charger Electrical Performance

4.3.1 Input

	Input voltage range	AC 90~265V
	Frequency	50~60Hz
Input	Input Current	≤32A
	Power Factor	≥0.98; @ ≥3300W
	Starting inrush current	≤48A

4.3.2 Output

Volta	Voltage Plateform		1	/	/	1
	Output voltage range	74~162V	1	/	1	1
	Max output current	60A	1	1	1	1
	Output power		6600W@22	20VAC; 3300)W@110VAC	
	Output way			CV/CC		
	Efficiency			≥93%		
	CV accuracy	±1%				
	CC accuracy	±2%				
Output	Ripple voltage	±5%				
	coefficient					
	Output voltage	<5S, overshoot<10%				
	rising time					
	Shut off	off Current decreased below 10% in 300ms, and decreased to		sed to 0A in		
	response time	500ms				
	Stand-by power					
	consumption	≤5W				

4.3.3 Low Voltage Output

	Output way	O/
	Output way	CV
	Output voltage	12V
Low voltage	Nominal current	5.5A
Output	CV accuracy	±2%
	Output Power	≥66W
	Ripple voltage coefficient	≤1%

4.3.4 Low Voltage Interface

Low	CAN Communication	yes
Voltage	Baud rate	Optional for 125Kbps、250Kbps、500Kbps
Interface	Terminal resistance	Not available

4.3.5 Environment Test

Humidity Test	Meet QCT 895-2011 7.2.1
Low temperature working test	Meet QCT 895-2011 7.2.2.1
Low temperature storage test	Meet QCT 895-2011 7.2.2.2
High temperature working test	Meet QCT 895-2011 7.2.2.3
High temperature storage test	Meet QCT 895-2011 7.2.2.4
Salt spray test	Meet QCT 895-2011 7.8.5
EMI	Meet GB/T 18487.3-2001 11.3.1
EMD	Meet GB/T 18487.3-2001 11.3.2
Harmonic current	Meet GB 17625.1-2003 6.7.1.1
Protection level	IP67
Vibration resistance	$10{\sim}25 \text{Hz}$ swing 1.2mm $$, 25 - 500Hz 30m/S^2 , 8 hours each direction
M T B F	150000H

4.3.6 Charger Protection Functions

	Input over-voltage protection	AC270±5V
Protection Functions	Input low-voltage protection	AC85±5V
	Output over-voltage protection	Stop output when exceed the highest voltage ±5V

Output low-voltage protection	Stop output when below the lowest voltage ±5V	
Over-temperatur	Power start to decrease when internal temperature rise to 85 °C,	
e protection	shut off when rise to 90 $^{\circ}\mathrm{C}$	
Output short circuit protection	Stop output	
Output polarity reverse protection	yes	
Grounding protection	≤100mΩ	
CAN Communication protection	Automatically stop output when CAN communication fails	
Power-off protection	Yes	

5 DC/DC Converter Technical Specification

5.1 DC/DC Converter Regulations requirements and reference standards

No.	Standard Code	Standard Name	Remark	
1	GB/T 24347-2009 Electric vehicle DC/DC converter		/	
2	GB/T 18488.1-2015	Electric motors and their controllers for electric vehicles -	,	
	GB/1 10400.1-2013	part 1: technical conditions	/	
3	GB/T 18384.2-2015	Safety requirements for electric vehicles - part 2:	,	
3	GB/1 10304.2-2013	functional safety and fault protection	/	
4	GB/T 18384.3-2015	Safety requirements for electric vehicles - part 3:		
4		protection against shock to personnel	/	
5	GB/T 18387-2008	Limits and measurement methods for electromagnetic	/	
	GB/1 16367-2006	field emission intensity of electric vehicles		
6	GB/T 31498-2015	Post-crash safety requirements for electric vehicles	/	
7	GB 9254-2008	Limits and methods for measurement of radio	,	
/	GD 9254-2006	harassment for information technology equipment	/	
8	GB/T 18655-2010	Limits and measurement methods for radio disturbance	,	
ŏ	GD/1 10055-2010	characteristics of vehicles, ships and internal combustion	/	

		engines used to protect vehicle-mounted receivers	
9	GB 29743-2013	Motor vehicle engine coolant	/
10	GB 4208	Enclosure protection level (IP code)	/
		Environmental conditions and tests for electrical and	
11	GB/T 28046-2	electronic equipment for road vehicles - part 2: electrical	/
		loads	
		Road vehicles - environmental conditions and tests for	
12	GB/T 28046-3	electrical and electronic equipment - part 3: mechanical	/
		loads	
		Environmental conditions and tests for electrical and	
13	GB/T 28046-4	electronic equipment for road vehicles - part 4: climatic	/
		loads	
14	GB/T 2423.34-2012	Environmental test - part 2: test method test Z/AD:	/
14		combined temperature/humidity cycle test	/
15	GB/T 2423.1-2008	Environmental testing of electrical and electronic	,
10	OB/1 2423.1-2000	products - part 1: test methods - test B: low temperature	/
16	GB/T 2423.2-2008	Environmental tests for electrical and electronic products	/
10		- part 2: test methods - test B: high temperature	/
		Electrical and electronic products - environmental tests -	
17	GB/T 2423.3-2008	part 2: test methods - Cab: constant heat and humidity	/
		test	
18	GB/T 2423.17-2008	Environmental tests for electrical and electronic products	/
10	GB/1 2423.17-2000	- part 2: test methods : salt spray	
19	GB/T 30512-2014	Prohibited substances requirements for automobiles	/
20	OC/T 412	Basic technical conditions of automotive electrical	
20	QC/T 413	equipment	/

5.2 DC/DC Converter Safety Regulations Specification

	Condition	Requirement
Grounding resistance test	@25A/AC	≤100mΩ
Input insulation test	@1000V/DC	≥20MΩ
Input withstand test	@2000V/DC 1min	Leak current≤10ma

5.3 DC/DC Converter Electrical Performance

5.3.1 Input

Nominal Voltage	96V	1	1	1	1
Input voltage range	74-162V	/	1	1	/

5.3.2 Output

	Nominal	
	output	14V
	voltage	
	Output	
	voltage	9~15V
	range	
	Nominal	
	output	110A
	current	
	Peak current	135A-140A
	Nominal	1500W
	power	150000
	Peak power	1800W last 6 minutes
	Efficiency	≥93%
	Dynamic	
	response	<50ms
	time	
Output	Voltage	≤1%
	regulation	≥ 170
	Load	≤1%
	regulation	<170
	Voltage	
	control	≤1%
	accuracy	
	Current	
	control	≤2%
	accuracy	
	Quiescent	≤1mA @14V
	current	√ mi∧ (₩ 1 + V
	Ripple	
	voltage	≤2% @nominal working state
	coefficient	

5.3.3 Environment Test

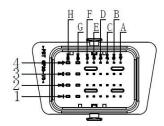
Humidity test	Meet GB/T 24347-2009 6.1.2
Low temperature test	Meet GB/T 24347-2009 6.1.1.1
High temperature test	Meet GB/T 24347-2009 6.1.1.2
Salt-spray Test	Meet GB/T 24347-2009 6.1.3
EMI	Meet GB/T 17619-1998 article 4
EMD	Meet GB 18655-2002 article 12 and 14
Salt-spray Test	IP67
EMI	$10{\sim}25 Hz$ swing 1.2mm $$, 25 - $500 Hz~30 m/S^2$, 8 hours each direction

М	Т	В	F	150000H

5.3.4 DC/DC Converter Protection Functions

	Input	96V	/	1	1	/		
	over-voltage protection	>162V	/	1	1	1		
	Input	96V	1	1	/	1		
	low-voltage protection	<74V	/	1	1	1		
Protection	Output over-voltage protection	Output voltage over-voltage protection threshold is 16±0.5V, working recovery after voltage back to≤14±0.2V						
Functions	Output low-voltage protection	Output voltage low-voltage protection threshold is $7\pm1V_{\odot}$ working recovery when voltage rise to ${\geqslant}9\pm0.2V$						
	Output over-current protection	Reduces the output voltage when the output current exceeds the maximum output current						
	Over-temperatu	Power start to decrease when internal temperature rise to 100°C,						
	re protection	shut off wh	nen rise to 1	10℃, auto-rec	overy when pov	wer decreased		
	Short circuit protection	Yes, auto-recovery						

6 Interface


The interfaces in the charger can be grouped into two categories, one category is low voltage interface, the other is high voltage interface.

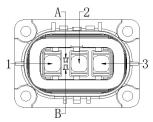
Low voltage interface includes signal connector and DC/DC output

High voltage interface includes AC220V input, OBC output and DC/DC input.

6.1 Low Voltage Connector and Pins Definition

6.1.1 32 pin Low Voltage Connector

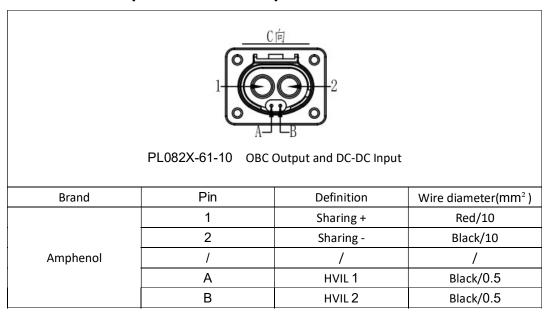
0643340100 Charger Low Voltage Connector



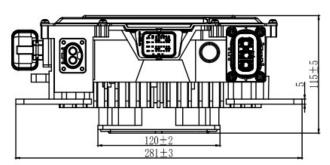
0643193211 >>>> Charger Low Voltage Connector

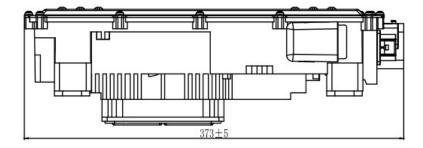
Pin No.	Name	Definition	Description
1H	KL30 constant power supply input	constant power supply input +	constant power supply input 9-16V, peak current 3A (electronic lock locking), time 1.5S,sleep current≤1ma
2A	12V0.2A+	OBC low voltage power supply +	
4A	CAH-H	CAN H	
4B	CAN-L	CAN L	
4C	HVIL+	High voltage connector interlock signal 1	Can be detected by vehicle or by
4D	HVIL-	High voltage connector interlock signal 2	charger,max voltage 12V,current is lot more than 0.1A
4G	KL31 Constant power supply input-	Constant power supply input-	Can be connected with OBC grounding, voltage is 0V, peak current is 5A
Others	NA	/	/

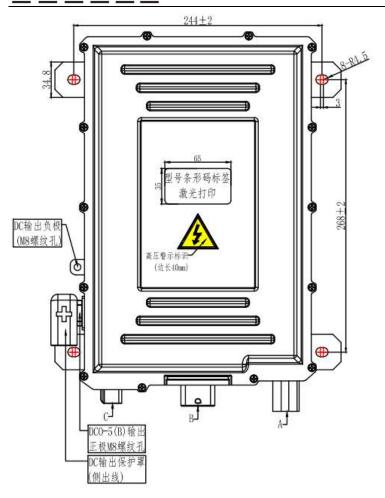
6.2 High Voltage Connectors and Pins Definition


6.2.1 AC Input

REM II -Z3PCH-6-A AC Input						
Brand	Pin	Definition	Wire diameter (mm²)			
	1	火线(L)	Brwon/6			
	2	地线 (PE)	Yellow Green/6			
Ruikeda	3	零线(N)	Blue/6			
	A	HVIL 1	Black/0.5			
	В	HVIL 2	Black/0.5			




6.2.2 OBC Output and DC-DC Input


7. Mechanical Requirement

7.1 Air-cooled Drawing

Installation Direction - Enforced Air Cooling-Liquid Cooling

8. Package, Transport and Storage

8.1 Package

The packing box shall be provided with product name, model, manufacturer identification,



inspection certificate of the manufacturer's quality department, manufacturing date, etc; There is a list of accessories in the packing box:

No.	Item	Qty	Unit	Remark
1	On-board Charger	1	pc	
2	Outboard bill	1	рс	

8.2 Transportation

The product shall be transported in a firm packing box, which shall comply with the provisions of relevant national standards and shall be marked with "handle with care" and "moisture-proof". The packaging box containing the product can be transported by various means of transportation. Direct rain and snow and mechanical impact shall be avoided during transportation.

The products shall be stored in the packing box when not in use. The ambient temperature of the warehouse shall be -10-40 °C and the relative humidity shall not be greater than 80%. There shall be no harmful gas, flammable, explosive products and corrosive chemicals in the warehouse, and there shall be no strong mechanical vibration, impact and strong magnetic field. The packing box shall be at least 20cm above the ground and at least 50cm away from the wall, heat source, window or air inlet, The storage period under the specified conditions is generally 2 years, and the inspection shall be carried out again after more than 2 years.

The product shall be stored in a ventilated and dry place. At the same time, high temperature sources, fire sources and chemicals must be avoided. Store neatly to avoid throwing.

8.3 Safe Guide

Warning: remind the user that the operation is dangerous

- * It is strictly prohibited to disassemble and refit the on-board charger for repair or commissioning
- * Do not place the parts in the rain
- * Please confirm that the housing is intact before installation. If it is damaged, please replace it immediately or contact the after-sales service department
- * All plugs and sockets shall be connected firmly. If they are damaged or loose, please replace them immediately
- *It is strictly prohibited to plug and unplug the connector when the product is powered on, otherwise personal injury may be caused

- *It is strictly prohibited to open the product shell during the power on operation of the product, otherwise personal injury may be caused
- * It is strictly forbidden to touch the high-voltage live parts of the product with bare hands. Please wear insulating gloves, insulating shoes Insulating clothing, live maintenance and detection are strictly prohibited
- *During the replacement of fuses and contactors, barbaric operation is strictly prohibited to avoid damaging the product and causing potential safety hazards
- * Three core cable with grounding wire shall be selected for AC power supply, and the grounding wire
- * Please unplug the power plug if there is abnormal sound or smell during the operation of the charger
- * Please keep away from fire sources and inflammables and explosives when the battery is normally charged
- * Do not charge damaged or non rechargeable batteries

Note: remind the user that the following operations are important operations of the product

- * Do not block the air inlet and outlet of the charger to prevent overheating
- * Please make sure that the output cable is not too long to avoid the impact of line voltage drop on charging
- * Please disconnect the power cord and charging plug when moving the charger
- * The battery voltage must be consistent with the nominal voltage of the charger
- * Avoid collision, compression, pulling, twisting or shaking the charging cable
- * The product should be placed in a safe, ventilated, dust-free and rain free environment
- * Please pack and store if not used for a long time