

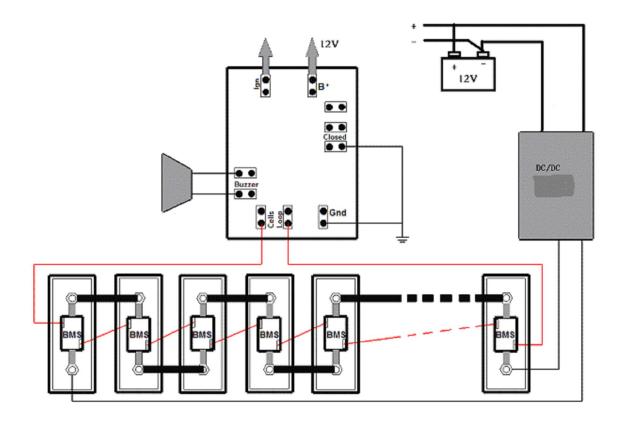
1.5KW DC-DC Converter Specification

TDC-J Series

V 3.2

Date____2016-10-14____

Table of Contents

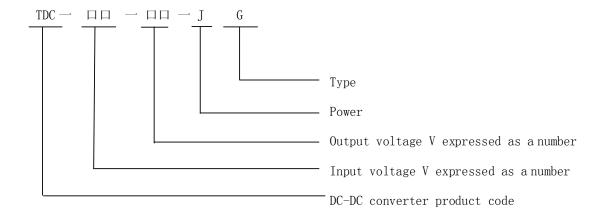

- 1 Overview
- 2 Basic functions
- 3 Technical Specifications
 - 3.1 Product Naming
 - 3.2 Model List
 - 3.3 Model selection lithium (lithium iron phosphate as an example)
 - 3.4 Technical Specifications Table
 - 3.5 Efficiency curve
 - 3.6 Withstand voltage performance
 - 3.7 Insulation
- 4 Protection
- 5 Interface
- 6 Interface Definition
- 7 Interface schematic
- 8 Fan Control Strategy
- 9 Block Diagram
- 10 Power Density
- 11 Water-cooled installation dimensions (in mm)
- 12 Natural cooling type installation dimensions (in mm)
- 13 Forced air-cooled installation dimensions (in mm)
- 14 Applications
- 15 Installation Requirements

DC-DC Converter Specifications

1 Overview

The TDC-J series 1.5KW DC-DC converters can be mounted on the electric vehicle to provide 12V / 24V low voltage DC power. Output can be attached to a 12V / 24V backup battery. The DC-DC converter automatically handles battery charge management. Case is fully sealed waterproof and dustproof structure, automotive temperature and anti-vibration protected.

The DC-DC converter and battery, 12V / 24V battery back-up, low-voltage equipment, and BMS are connected as shown below. The DC-DC converter high voltage DC power input is directly connected to the battery positive and negative, DC output is connected to a 12V battery backup, and then output to the respective 12V / 24V appliances.

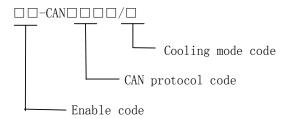

2 Basic Functions

- 2.1 High-voltage DC battery power can be converted to 12V / 24V low-voltage DC
- 2.2 DC-DC converter capable of 12V / 24V backup battery charge management
- 2.3 With HVIL high voltage interlock function
- 2.4 CAN 2.0 communication displays the working status, fault code, etc.
- 2.5 The CAN bus can be used to run OBD diagnostics, display working status, modify operating parameters, and perform other programming functions
- 2.6 Protection features include input reverse polarity protection, input low-voltage protection, input overvoltage protection, output overvoltage, overcurrent, short circuit protection, over-temperature protection
- 2.7 Input precharge function
- 2.8 Sealed waterproof structure, water-cooled, forced air cooling or natural convection cooling

3 Technical Specifications

3.1 Product Naming

3.1.1 Type designation



1.1.1 Model name representation

Name Representation

Name	Representation	
Туре	No letter = No isolation, G = Isolation, GC = Isolated band charging curve	
Power	A=50W, B=100W, C=200W, D=300W, E=400W, F=500W, G=600W, H=800W,	
	I=1000W, J=1500W, K=2000W, L=2500W, M=3000W	

1.1.2 Configuration

1.1.3 Configuration description

Name Representation

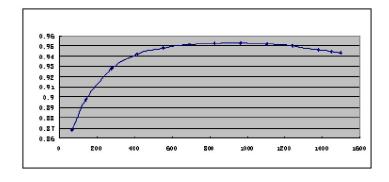
Name	Representation
Enable code	AF = No enable line, AL = 12V / 24V enable line
CAN protocol code	5000-6000
Cooling mode code	F = fan forced air cooling, N = natural cooling, W = water-cooled

1.2 Model list

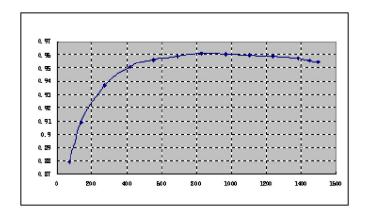
Input	Output	Mode1	Configuration	Remarks
		TDC-144-12JG	AF-CANxxxx/x	No enable line
144V	13. 8V	TDC-144-12JG	AL-CANxxxx/x	With enable line
1441		TDC-144-24JG	AF-CANxxxx/x	No enable line
	27. 6V	TDC-144-24JG	AL-CANxxxx/x	With enable line
		TDC-320-12JG	AF-CANxxxx/x	No enable line
	13. 8V	TDC-320-12JG	AL-CANxxxx/x	With enable line
320V		TDC-320-24JG	AF-CANxxxx/x	No enable line
	27. 6V	TDC-320-24JG	AL-CANxxxx/x	With enable line
		TDC-360-12JG	AF-CANxxxx/x	No enable line
360V	13. 8V	TDC-360-12JG	AL-CANxxxx/x	With enable line
		TDC-360-24JG	AF-CANxxxx/x	No enable line
	27. 6V	TDC-360-24JG	AL-CANxxxx/x	With enable line
		TDC-540-12JG	AF-CANxxxx/x	No enable line
540V	13. 8V	TDC-540-12JG	AL-CANxxxx/x	With enable line
		TDC-540-24JG	AF-CANxxxx/x	No enable line
	27. 6V	TDC-540-24JG	AL-CANxxxx/x	With enable line

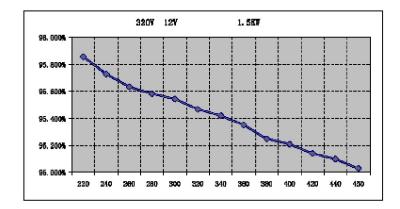
1.3 Lithium Battery Model Select (lithium iron phosphate as an example)

Product	Cell nominal/maximum	Number of cells	Input voltage
TDC-144		44-55	110-200V DC
TDC-320	3. 2/3. 6V	88-120	220-450V DC
TDC-360		121-137	260-560V DC
TDC-540		160-178	420-650V DC

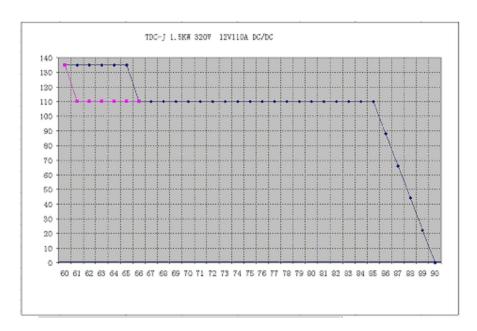

1.4 Technical Specification

	Model	TDC-144 -12JG	TDC-144 -24JG	TDC-320 -12JG	TDC-320 -24JG	TDC-360 -12JG	TDC-360 -24JG	TDC-540 -12JG	TDC-540 -24JG
_	Voltage DC144V		DC3	DC320V DC360V		60V	DC5	i40V	
I	Current	11. 5A		5A		4. 5A		2A	
n	Maximum	€.	18A		9A		8A		3A
p u	Input V	110-	·200V	220-	450V	260-	560V	420-	-650V
u t	Minimum V	105V	±5V	215V	±5V	255V	±5V	400V	±5V
	Maximum V	215V	±5V	455V	±5V	570V	±10V	660V	±10V
	Start time	≈1.5S @	VIN=144V	≈0.9S @	VIN=320V	≈0.8S @	VIN=360V	≈0.6S @	VIN=540V
	Output V	13.8V±1%	27.6V±1%	13.8V±1%	$27.6V \pm 1\%$	13.8V±1%	$27.6V \pm 1\%$	13.8V±1%	27.6V±1%
	Current	110A	55A	110A	55A	110A	55A	70A	35A
0	Peak	135A-140A	65A-70A	135A-140A	65A-70A	135A-140A	65A-70A	70A-75A	35A-37A
u	Power		1500W 1800W 6 minutes					1000W	
t	Peak W							1000W	
р	Efficiency				≥9	95%			
u	Transient				€5	0ms			
t	Voltage reg				1	%			
	Load reg				1	%			
	Accuracy		≤1%						
	Steady flow		≤2%						
	0 Leakage		≤5mA						
	0 ripple	≤276mV @ 12V ≤552mV @ 24V							
	Over V Prot		15-16V @ 12V 29-30V @ 24V						


	12V/24V enable voltage	6-30V
	12V/24V enable current	≤1mA
	Output harness	25-30mm2 @ 12V 16mm2 @ 24V
	Ground Resist	Resistance between ground and heatsink less than 100 milliohms, test current 25A AC
0	Working Temp	-30~60 °C
t	Storage Temp	-40~90°C
h	Humidity	5%~95%non-condensing
е	IP rating	GB4208-2008 IP67
r	Test voltage	Withstands the test voltage shown in Table 1 with no corona, ionization, arcing or breakdown
		between test terminals
	Insulation	At ambient temperature (23 \pm 2) $^{\circ}$ C and relative humidity of 80% to 90%, not less than 2M $^{\circ}$ Q,
	resistance	test voltage in Table 2
	Noise	Distance 1.5m, A-weighted ≤55dB
	Electromagnetic	Meets the GB $/$ T 18655-2002 12 and 14 of the relevant requirements
	Compatibility	
	Reliability	MTBF 300,000 Hours


1.5 Efficiency

1.5.1 144V to 12V efficiency curve



1.5.2 320V to 12V efficiency curve

1.6 320V to 12V temperature derating curve

Blue line for the temperature rise of the derating curve, red line for the temperature drop of the recovery curve

1.7 Withstand voltage characteristic

Terminal-to-ground (case) and each other, the dielectric strength of the electrical connection between the circuit should be able to withstand the test voltage in the table below, there should be no corona, ionization, arcing or breakdown phenomenon.

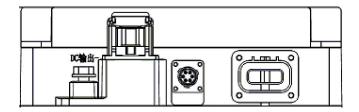
Table 1 test voltage

Between + and case	2500V DC	1min	Leakage ≤0.1mA
Input to CAN signal	2500V DC	1min	Leakage ≤0.1mA
CAN signal housing	500V DC	1min	Leakage ≤0.1mA

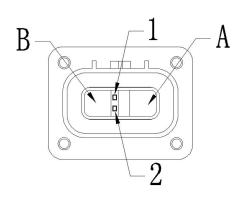
1.8 Insulation

Terminal-to-ground (case) and each other, the dielectric strength of the electrical connection between the circuit should be able to withstand the test voltage in the table below, there should be no corona, ionization, arcing or breakdown phenomenon.

Table 2 insulation test


Negative input of the	1000V DC	1min	≥2M
shell			
Negative input	1000V DC	1min	≥2M
signals to CAN			
CAN signal housing	500V DC	1min	≥2M

2 Protective function


Overcurrent protection	The output is stopped when the output current exceeds		
_	the peak current		
Output overvoltage			
protection	See Technical Specifications		
Output under-voltage	The output voltage is below 6V		
protection	Delay 2 seconds after the fault message Output Low		
Over-temperature	Internal power began to drop 85 degrees, 90 degrees		
protection	off		
Input undervoltage			
protection	See Technical Specifications		
Input overvoltage	С Т 1 ' 1 С 'С' '.'		
protection	See Technical Specifications		
	The output voltage is below 6V		
	To resume normal operation to eliminate the		
Short circuit protection	short-circuit voltage to rise above 6V; delay of 10		
	seconds after the current dropped to a quarter of		
	rated current		
Input anti-reverse	Does not work, does not damage, restore the normal		
protection	wiring		
HVIL high voltage	Loose input plug when not plugged into place, DC-DC		
interlock	stops working		
	Auto-stop when CAN communication is disabled		
Communication protection	(optional)		
			

3 Interface diagram

With input, output, signal three interfaces, the output negative for the aluminum shell.

4 Interface definition diagram

Input connector signal plug-in:

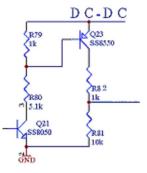
Model: HV1-Z2J (40A) -00 Model: RTOW0106P W 03

Plug-in model: HV1-T2K (40A) -00 Plug-in model: RT0W6106S W H03 (long)

Plug-in model: RTOW6106SWHEC03 (short)

Brand: Xin Xi Brand: Amphenol

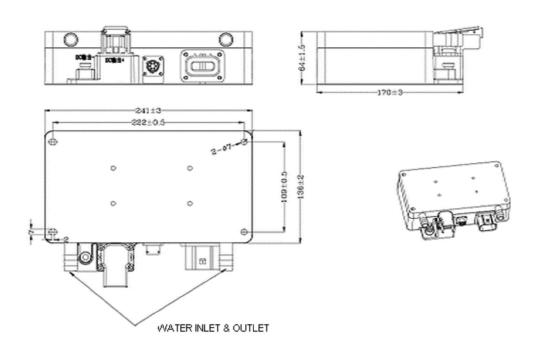
1	HVIL(interlock)
2	HVIL(interlock)
A	DC input +
В	DC input -

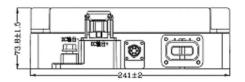

Definition:

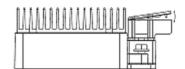
A	CANL
В	CANH
С	CANGND
D	12/24V control
Е	Instructions
F	Fault

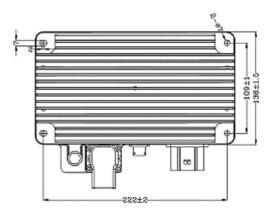
5 Interface Schematic

Work instructions: Output: As shown in the figure, when the DC-DC output voltage exceeds 13V or greater than the operating current of 1 A, work instructions valid pin is pulled low (1K impedance); when the DC-DC does not work, the pin is in open high-impedance state. Maximum withstand voltage of 30V. Working with indication output DC-DC main output negative common ground (ground shell).

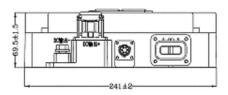

When the fault when the DC-DC, is the output voltage is less than 12.5V, while current is less than 1 A, the high level fault signal output (with DC-DC output voltage equivalent, 1K impedance): Fault indication output: As shown in the figure, when the DC-DC works, it outputs a low level state, 10K impedance. Fault indication output with DC-DC main output negative common ground (ground shell)

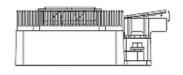

6 Power Density

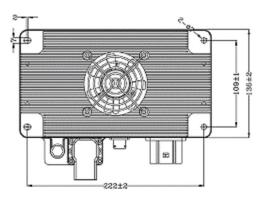

	weight	volume	Mass unit density	Bulk density
Unit	kg	L	kw/kg	kw/L
Natural	4. 2	3. 2	0. 36	0. 47
cooling	4. 2	3. 4	0. 30	0.47
Water-cooled	4.8	2.6	0.31	0. 58

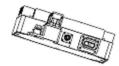

7 Water cooling dimensions (in mm)

8 Natural cooling dimensions (in mm)

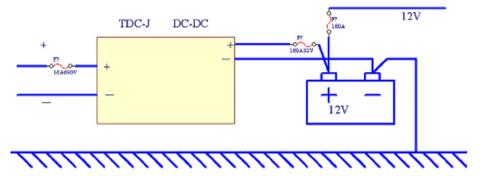


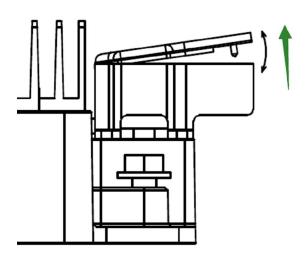






9 Forced air cooling dimensions (in mm)





10 Application

- 14.1, DC-DC input terminal HV DC requires an external fast fuse and installed in a easily replaceable position. Fuse value of 1.5-2 times the current value, 320V models need 16 -20A 690V, 144V models need 24 -32A 250V, 360V-540V models need 10 -16A 750V.
- 10.2, DC-DC output terminal needs a fuse at both ends, and the battery negative must be connected to the frame, as shown below. Fuse is determined by the maximum current, generally more than 180A.

- 14.3. The battery terminals must be tight to prevent damage to the DC-DC.
- 14.4. The output positive terminal block protective cover can be opened up as shown below:

14.5 Standard water-cooled model parameters (model 24013520)

Dimensions: 240mm * 135mm * 20mm

Material: 6063 (T6)

Access to water diameter: 1 2 mm

Weight: 17 49 g

Surface treatment: degreasing, drawing

Flow rate: 5 -20L / min Pressure: 200 kPa Water capacity: 1 6 0mL

Maximum feed water temperature: not more than 70 degrees (DC-DC output 1500W, flow rate 5 L / min)

Cooling parameters: flow rate 5 L / min, heating power 300W, Thermal resistance 0.042 degrees / W, the flow resistance of 0.0 17 bar

Cooling parameters: flow rate 7 L / min, heating power 300W, Thermal resistance 0.029 degrees / W, flow resistance 0.035bar

14.6 Standard water-cooled model parameters (model 24013525)

Dimensions: 240mm * 135mm * 25mm

Material: 6063 (T6)

Access to water Diameter: 18mm

Weight: 2187g

Surface treatment: degreasing, drawing

Flow rate: 5 -20L / min

Pressure: 200kpa Water capacity: 200 mL

The maximum water temperature: not more than 70 degrees (DC-DC output 1500W, flow rate 5 L / min)

Cooling parameters: flow rate 5 L / min, heating power 300W, Thermal resistance 0.054 degrees / W, flow resistance 0.009bar

Cooling parameters: flow rate 7 L / min, heating power 300W, Thermal resistance 0.031 degrees / W, flow resistance 0.015bar

15. Installation Requirements

- 1 Air-cooled DC-DC heatsink must have at least 3cm clearance in order to facilitate ventilation.
- 2 Natural cooling type DC-DC must be mounted with radiator up, not down. There must be a clearance of at least 10cm for the heat sink.

- 3 Water-cooled DC-DC controller needs to start primary coolant fan when the water temperature is 60 degrees, and stop at 50 degrees.
- 4 Air cooling and natural cooling type DC-DC must not be installed in a confined space. Fresh cool air ventilation must be provided to prevent overheating.
- 5 Output positive terminal M8 studs, use 14mm hex nuts, tightening force 14-16 $_{\rm Nm}$
- 6 Output negative terminal M8 hex flange bolt tightening force 14-16Nm.